Hydrazination of Pyridazines and Phthalazines [1,2]

A. Counotte-Potman and H. C. van der Plas*

Laboratory of Organic Chemistry, Agricultural University,
Wageningen, The Netherlands
Received January 3, 1983

It is shown by ¹⁵N-labelling techniques that hydrazination of pyridazines partly occurs according to a reaction pathway, involving addition of the nucleophile (hydrazine), ring opening and ring closure (S_M(ANRORC)-mechanism). It is also proved that phthalazines undergo hydrazination without ring opening (S_M(AE)-mechanism).

J. Heterocyclic Chem., 20, 1259 (1983).

In a preceding paper [3] we reported the occurrence of $S_N(ANRORC)^{ipso}$ mechanism [4] during hydrazination of 1,2,4,5-tetrazines. This mechanism has been elucidated by use of ¹⁵N-labelling studies. The course of the reaction is exemplified in Scheme 1. 3-L-6-Methyl-1,2,4,5-tetrazine (1) undergoes first addition of ¹⁵N-labelled hydrazine at C-6, whereafter ring opening and ring closure take place. It leads to the 3-hydrazino-6-methyl-1,2,4,5-tetrazine (2*), in which the hydrazino group contains nitrogen atoms originally present in the tetrazine ring.

Only a minor part of the tetrazine molecules follow the $S_M(ANRORC)$ pathway (1, L = Cl, 7%; 1, L = Br, 19%; 1, $L = NH_2, 25\%$) [3]. The main part of 1 reacts according to the $S_M(AE)^{ipso}$ pathway. In extending this work we became interested whether other (less reactive) diazines, containing the two nitrogen atoms in vicinal position, would also react with hydrazine according to the $S_M(ANRORC)$ pathway. In this paper we deal with a ¹⁵N-study of the hydrazination of some pyridazines and phthalazines.

Results and Discussion.

The compounds investigated were the 3-chloro- and 3-bromopyridazines (3a-c), the 1-chloro-, 1-bromo- and 1-iodophthalazines (5a-d) and 1-aminophthalazine (5e). The compounds were prepared according to known procedures; when the procedure of preparation was improved, it is described in the experimental section.

The hydrazination was carried out by reacting ¹⁵N-double labelled pyridazines with unlabelled hydrazine and unlabelled pyridazines with ¹⁵N-double labelled hydrazine in order to check if both methods give the same results. In the phthalazine series, labelled phthalazines **5a*-5e*** were reacted with unlabelled hydrazine. In order to establish whether the nitrogen-15 is present in the exocyclic hydrazino group or in the diazine ring, the hydrazino group was reduced to an amino group by Raney nickel and hydrogen [5].

In Scheme 3 the expected position of the nitrogen-15 label is visualized, when a ring-labelled pyridazine 3* [6] follows the S_N(ANRORC) pathway or the S_N(AE) pathway. When the hydrazination follows exclusively, the S_N(ANRORC) pathway the ¹⁵N-label is only present in the exocyclic hydrazino group of 4 (i.e. 4B*) and after reduction, in the amino group of 7 (i.e. 7B*). Mass spectrometry of the amino compound 7* will show that the excess of nitrogen-15 (as calculated from the M + 1 peak) is the same as originally present in the M + 2 peak of double labelled pyridazine 3*. If 3* reacts exclusively according to the S_N(AE) pathway, the label remains in the ring and the M + 2 peak of 7 will contain the same excess of nitrogen-15 as present in the M + 2 peak of 3*. When both mechanisms operate the percentage S_N(ANRORC) mechanism is calculated from % $S_M(ANRORC) = (M +$ $1)/[(M + 1) + (M + 2)] \times 100\%$, in which M + 1 and M + 2 represent the excess of nitrogen-15, calculated from the intensity of the M + 1 and M + 2 peaks. When the hydrazination is carried out with 15N-labelled hydrazine and unlabelled pyridazine the percentage S_N(ANRORC) mechanism is calculated from % S_N(ANRORC) = (M + $2)/[(M + 1) + (M + 2)] \times 100\%$.

Quite similarly the hydrazination of the double labelled phthalazines 5* with unlabelled hydrazine was studied. The presence of nitrogen-15 in the hydrazino group of 6* was established by measuring the excess of nitrogen-15 as M + 1 in the amino compound 8*, obtained by reduction of the hydrazino group in 6* by Raney nickel and hydrogen.

The results of the ¹⁵N-studies on the hydrazination are summarized in Tables I and II.

NHNH₂

From these results it becomes evident that hydrazination of the pyridazines 3a-3c occurs for only $\leq 30\%$ by the $S_M(ANRORC)$ process. This result has also been found with the 1,2,4,5-tetrazines (1), but is in contrast to the amination of the halogenopyrimidines [7], halogenopteridines [8a] and halogeno-1,2,4-triazines [8b] with the strong nucleophilic amide ion, in which the $S_M(ANRORC)$ pathway is the major route. The 3-bromo compound 3b reacts faster than the 3-chloro compound 3c (27% for 3b, 17% for 3c). The same tendency is found in the 3-L-6-methyl-1,2,4,5-tetrazines 1 (19% for 1, L = Br, 7% for 1, L = Cl) [3]. Comparison of the percentage $S_M(ANRORC)$ for the 3-bromo compounds 3a and 3b show that the presence of a methyl group at position 6 does not influence this per-

centage considerably. The S_N(ANRORC) is initiated by addition of the hydrazine at C-6.

It is very likely that the remaining part of the compounds 3a-3c will react according to the $S_N(AE)$ pathway. The results, summarized in Table II, make it clear that the phthalazines 5^* do not react into the corresponding 1-hydrazino compounds 6^* with ring opening. The M+2 excess of 6^* was due to a label in the ring, as the amino compounds 8^* contain the same excess of M+2. They all react according to the $S_N(AE)$ pathway. Whether the complete absence of a ring opening reaction during the hydrazination is due to the non-occurrence of an addition at C-4 (the initial step in the $S_N(ANRORC)$ mechanism) or to the non-occurrence of ring opening, if the adduct at C-4 has been formed, is unclear [9].

EXPERIMENTAL

Melting points are uncorrected. Mass spectra were determined on an AEI 902 mass spectrometer. The 'H-nmr spectra were recorded on an

Table I

Labelling Studies of Pyridazines

15N excess [a] in compounds 7*, % S_M(ANRORC)

		7	*		
Starting Compound	Reagent	(M + 1) (%)	(M + 2) (%)	S _N (ANRORC) (%)	S _M (ANRORC) Average (%)
3a	*NH ₂ ·*NH ₂	4.9	2.2	31	30
3a	*NH ₂ -*NH ₂	5.3	2.2	29	
3b	*NH,-*NH,	5.6	2.6	32	
3b*	NH,-NH,	1.4	5.1	22	27
3 c	*NH ₂ -*NH ₂	7.6	1.5	17	
3c*	NH_2-NH_2	0.9	4.9	16	17

Table II

Labelling Studies of Phthalazines

15N excess [a] in compounds 6* [b] and 8*, % S_N(ANRORC)

Substrate	6*		8*		%	
	M + 2	M + 1	M + 2	M + 1	S _M (ANRORC)	
5a*	5.0	0.3	5.1	0.4	0	
5e*	5.0	0.3	5.0	0.4	0	
5d*	5.0	0.3	5.0	0.5	0	
5e*	4.8	0.4	4.7	0.4	0	
5b*	5.0	0.3	5.3	0.4	0	

[a] Accuracy $\pm 0.2\%$. [b] The phthalazin-3-ones, the starting substances for the preparation of 5^* have double '5N-labelling for 5% (M + 2) and mono '5N-labelling for 0.3% (M + 1).

Hitachi-Perkin Elmer R-24B spectrometer. Tetramethylsilane was used as internal standard (δ 0 ppm). Column chromatography was performed on Merck silica gel 60 (70-230 mesh ASTM). ¹⁵N-Hydrazine-hydrate from Prochem was used. It contained 95 atom % of ¹⁵N₂ and was a 24.6% solution of ¹⁵N-hydrazine-hydrate in water. This was mixed with unlabelled hydrazine-hydrate (100%, from Merck). To prepare the starting compounds with the ¹⁵N label in the heteroaromatic ring ¹⁵N-hydrazine sulfate from VEB Berlin-Chemie (Berlin Adlershof) was used, it contained 10.2% ¹⁵N₂ and 0.6% ¹⁵N.

Preparation of Starting materials and Reference Compounds.

3-Bromopyridazine (**3a**) [10], 3-bromo-6-methylpyridazine (**3b**) [10], 3-chloro-6-methylpyridazine (**3c**) [11], 3-amino-6-methylpyridazine (**7**), R = CH₃) [5], 1-chloro[2,3-di-\frac{15}{1}]phthalazine (**5a***) [12], 1-chloro-4-methyl-[2,3-di-\frac{15}{1}]phthalazine (**5b***) [13] and 1-iodo[2,3-di-\frac{15}{1}]phthalazine (**5d***) [14] were prepared according to published procedures.

1-Bromo[2,3-di-15N]phthalazine-1(2H)-one (5c*).

[2,3-Di-15N]phthalazin-1(2H)-one (0.5 g) [15] was reacted with 5 g of phosphorus oxybromide at 130° during 30 minutes. To the mixture 55 g of crushed ice was added and then 55 ml of 2N aqueous sodium hydroxide solution. The product was filtered off, yield 58%, mp 176-178° (lit [16] 175°).

3-Bromo-6-methyl[1,2-15N]pyridazine (3b*).

This compound was prepared from 6-methyl[1,2-15N]pyridazin-3(2H)-one [10], obtained by reacting 1 g of ethyl 4-oxopentanoate with a solution of 0.93 g of 15N-labelled hydrazine sulfate and 3 g of sodium acetate in 10 ml of water. The solution was boiled for 2.5 hours. All the further steps are carried out by the procedure as given in [10] and [11].

1-Aminophthalazine (5e).

This compound was prepared from 1-hydrazinophthalazine (for the preparation see below) and Raney nickel and hydrogen, analogously to the procedure given for the preparation of 3-amino-6-methylpyridazine from 3-hydrazino-6-methylpyridazine [5]. The reaction was carried out in a Parr apparatus and the reduction time was 1 night. The amino compound was isolated by column chromatography on silica gel with chloroform/5% methanol as eluent; yield 50%, mp 210-212° (lit [12] 212-213°).

3-Aminopyridazine (7, R = H).

This compound was obtained by Raney nickel/hydrogen reduction of hydrazino compound 4a (see reference [5]), reaction time, 2.5 hours. Isolation by column chromatography on silica gel with chloroform/5% methanol as eluent, mp 174-176° (lit [10] 172°).

Hydrazinolysis Reactions:

a) Halogenopyridazines.

Halogenopyridazines 3 or 3* (1 mmole) was dissolved in 0.5 ml of butanol and 2 mmoles of hydrazine-hydrate were added. The mixture was refluxed during 4 hours and evaporated to dryness. Based on nmr, 80% of the chloro compound was converted to the hydrazino compound; the bromo compounds were converted for 100%. The hydrazino compounds 4 were compared with samples prepared according to literature procedures [5,17].

b) Halogenophthalazines.

Halogenophthalazine 5* (1 mmole) in 0.6 ml of ethanol and 10 mmoles of hydrazine-hydrate were refluxed during 2 hours. After cooling the hydrazino compound was filtered off [18].

c) Aminophthalazine.

A solution of 1 mmole of **5e*** in 0.6 ml of ethanol and 10 mmoles of hydrazine-hydrate were refluxed during 20 hours. After cooling the hydrazino compound was filtered off [19].

Acknowledgement.

We thank Mr. R. van der Molen and Mr. H. Jongejan for carrying out some experiments and Drs. C. A. Landheer for the mass spectrometric

REFERENCES AND NOTES

- [1] Part 31 on the S_N(ANRORC) mechanism. For part 30 see Henk C. van der Plas, Valery N. Charushin and Beb van Veldhuizen, *J. Org. Chem.*, **40**, 1354 (1983).
- [2] Part 9 on pyridazines from this laboratory. For part 8 see H. Hara and H. C. van der Plas, J. Heterocyclic Chem., 19, 1205 (1982).
- [3] A. Counotte-Potman, H. C. van der Plas, A. van Veldhuizen and C. A. Landheer, J. Org. Chem., 46, 5102 (1981).
- [4] H. C. van der Plas, Acc. Chem. Res., 11, 462 (1978); H. C. van der Plas, "Lectures in Heterocyclic Chemistry", Vol VI, S1-S23, R. N. Castle and T. Kappe, eds, HeteroCorporation, Tampa, FL, 1982.
 - [5] C. A. Barlin and C. Y. Yap, Aust. J. Chem., 30, 2319 (1977).
- [6] An asterix indicates that the compound is (possibly) labelled with nitrogen-15.
- [7] A. P. Kroon, H. C. van der Plas and G. van Garderen, Rec. Trav. Chim., 93, 325 (1974).
- [8a] J. Nagel and H. C. van der Plas, Tetrahedron Letters, 2021 (1978); [b] A. Rykowski and H. C. van der Plas, Rec. Trav. Chim., 92, 449 (1973).
- [9] A similar pattern has been observed in the amination of 2-chloro-3,6-diphenylpyrazine into 2-amino-3,6-diphenylpyrazine by treatment with potassium amide in liquid ammonia. It has been proved that in this reaction addition of the amide ion initially occurs at C-5; this adduct does not undergo ring opening. The product is formed by addition of the amide ion at C-2, followed by rapid chloride ion expulsion. The addition at C-5 seems kinetically controlled. P. J. Lont, H. C. van der Plas and A. van Veldhuizen, *ibid.*, **92**, 708 (1973).
 - [10] G. Grundman, Chem. Ber., 81, 1 (1948).
 - [11] W. G. Overend and L. F. Wiggins, J. Chem. Soc., 239 (1947).
- [12] C. M. Atkinson, C. W. Brown and J. C. E. Simpson Sr., ibid., 1081 (1956).
- [13] E. M. F. Stephenson, ibid., 1913 (1963).
- [14] N. Hirsch and D. G. Orphanos, Can. J. Chem., 44, 1551 (1966).